Combining Macro-operators with Control Knowledge
نویسندگان
چکیده
Inductive Logic Programming (ilp) methods have proven to succesfully acquire knowledge in very different learning paradigms, such as supervised and unsupervised learning or relational reinforcement learning. However, very little has been done on General Problem Solving (gps). One of the ilp-based approaches applied to gps is hamlet. This method is able to learn control rules (heuristics) for a non linear planner, prodigy4.0, which is integrated into the ipss system; control rules are used as an effective guide when building the planning search tree. Other learning approaches applied to planning generate macro-operators, building high-level blocks of actions, but increasing the branching factor of the search tree. In this paper, we focus on integrating the two different learning approaches (hamlet and macro-operators learning), to improve a planning process. The goal is to learn control rules that decide when to use the macro-operators. This process is succesfully applied in several classical planning domains.
منابع مشابه
Towards a General Framework for Composing Disjunctive and Iterative Macro-operators
Inducing disjunctive and iterative macro-operators from empirical problem-solving traces provides a more powerful knowledge compilation method than simple linear macro-operators. Whereas earlier work focused on when to create iterative macro-operators, this paper addresses how to form them, combining proven optimization methods such as extraction of loop invariants, with techniques for further ...
متن کاملDHG: A System for Generating Macro-Operators from Static Domain Analysis
The attempt of dealing with the complexity of planning tasks by resorting to abstraction techniques is a central issue in the field of automated planning. Although the generality of the approach has not been proved always useful on domains selected for benchmarking purposes, in our opinion it will play a central role as soon as the focus will move from artificial to real problems. In this case,...
متن کاملGenerating Macro-Operators by Exploiting Inner Entanglements
In Automated Planning, learning and exploiting additional knowledge within a domain model, in order to improve plan generation speed-up and increase the scope of problems solved, has attracted much research. Reformulation techniques such as those based on macro-operators or entanglements are very promising because they are to some extent domain model and planning engine independent. This paper ...
متن کاملGeneration of macro-operators via investigation of action dependencies in plans
There are many approaches for solving planning problems. Many of these approaches are based on ‘brute force’ search methods and they usually do not care about structures of plans previously computed in particular planning domains. By analyzing these structures, we can obtain useful knowledge that can help us find solutions to more complex planning problems. The method described in this paper is...
متن کاملExploiting Block Deordering for Improving Planners Efficiency
Capturing and exploiting structural knowledge of planning problems has shown to be a successful strategy for making the planning process more efficient. Plans can be decomposed into its constituent coherent subplans, called blocks, that encapsulate some effects and preconditions, reducing interference and thus allowing more deordering of plans. According to the nature of blocks, they can be str...
متن کامل